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Inledning
Diagnostiken inom hematologin är ofta mul-
tidisciplinär och kräver samarbete mellan 
kliniker, laboratorieläkare, patologer och 
genetiker. Hematologen är ansvarig för att 
samla ihop och tolka resultaten från olika 
prov, i synnerhet med beaktande av patien-
tens symtom. AI har potential att underlätta 
detta komplexa arbete genom att automati-
sera och effektivisera analysen av stora da-
tamängder från olika diagnostiska metoder. 
Maskininlärning kan hjälpa till att identifiera 
mönster och samband som kan vara svåra 
för människor att upptäcka, vilket kan bidra 
till snabbare och mer träffsäkra diagnoser. 
Dessutom kan AI fungera som ett beslutsstöd 
som inte ersätter utan kompletterar läkarens 
expertis och bidrar till att minska risken för 
felbedömningar. Samtidigt frigör den tid tid 
för specialisterna att fokusera på svårare och 
mer komplexa fall (1).

Från blodstatus till AI-assisterad 
mikroskopi
Blodstatus är ett av de vanligaste blodpro-
ven och används för att undersöka en rad 
olika symtom och sjukdomstillstånd. Det är 
ett grundläggande verktyg vid utredning av 
trötthet, infektioner och blödningar. Genom 
att analysera mängden och fördelningen av 
blodets olika celler – röda och vita blodkrop-
par och blodplättar – kan man få viktig in-
formation om kroppens hematologiska och 
immunologiska status.

Avvikande fynd i blodstatus verifieras van-
ligtvis med digital mikroskopi. I det steget 
förbereds ett perifert blodutstryk som färgas 
och digitaliseras med hjälp av högupplösta 
skannrar. De digitala bilderna analyseras 
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Artificiell intelligens (AI) har under det senaste decenniet växt fram som en transformativ kraft 
inom medicinen, inte minst inom hematologin. I en disciplin där diagnoser är beroende av 
tolkning av komplexa data, såsom fullständig blodstatus och proteinfraktioner, cytomorfologi, 
histopatologi, flödescytometri, cytogenetiska och genetiska analyser, erbjuder beräknings-
mässiga metoder nya lösningar att hantera och förstå dessa informationsmängder. För läkare 
inom hematologi väcker detta både förväntningar och frågor. Kan tekniken förbättra diagnos-
tisk noggrannhet och effektivitet eller riskerar den att marginalisera det kliniska omdömet?

sedan av ett AI-system som tränats med över-
vakade inlärningsalgoritmer för att upptäcka 
och klassificera olika celltyper, inklusive 
eventuella patologiska avvikelser (figur 1). 
Typiskt sett identifierar dessa system omkring 
tio av de vanligaste celltyperna, såsom röda 
blodkroppar, neutrofiler, lymfocyter, mono-
cyter, eosinofiler, basofiler, blaster, trombocy-
ter och metamyelocyter. Systemet markerar 
misstänkta celler och föreslår klassificeringar, 
men resultaten kontrolleras alltid av bioanaly-
tiker eller i vissa fall av läkare. Det mänskliga 
omdömet är avgörande för att säkerställa 
korrekt tolkning, särskilt i fall med ovanliga 
eller otydliga fynd. Flera studier har visat att 
AI-assistans kan förbättra träffsäkerheten 
i morfologiska bedömningar och samtidigt 
minska den tid som krävs för analys (2, 3). 
Däremot görs ingen detaljerad bedömning av 
cellernas morfologi, eftersom det fortfarande 
kräver mänsklig expertis.

Bildanalys är känsligt för hur proverna är 
förberedda och kräver att de hanteras på ett 
standardiserat sätt (4, 5). Digitaliseringen 
måste därför oftast ske med ett och samma 
bildsystem för att säkerställa att bildupplös-
ning, färgtoner och nyanspalett överensstäm-
mer med vad AI har tränats på. Avvikelser 
i dessa parametrar kan påverka analysens 
noggrannhet och leda till felklassificeringar.
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HUVUDBUDSKAP: 
•	 AI-assisterad analys spänner över mikroskopi, molekylärgenetisk diagnostik, flödescytometri och 

kromosombandsanalys.
•	 De flesta AI-tillämpningar bygger på de senaste framstegen inom djupinlärning, i synnerhet på konvolutionella 

neurala nätverk och transformermodeller.
•	 AI erbjuder nya lösningar för att hantera och tolka komplexa medicinska data, vilket potentiellt kan förbättra 

diagnostisk noggrannhet och effektivitet inom hematologi.
•	 Trots fördelar finns det regulatoriska, etiska och praktiska frågor att lösa, inklusive behov av transparenta och 

validerade AI-modeller. Vidare är det av största vikt att säkerställa att läkare bibehåller sin kompetens.

AI kan minska subjektiviteten  
i cytomorfologisk analys

Om läkaren misstänker en hematologisk 
sjukdom tas vanligen ett benmärgsaspirat för 
vidare analys. Aspiratprover möjliggör flera 
olika tester parallellt, men en av de mest 
centrala och omfattande undersökningarna 
är den cytomorfologiska bedömningen med 
hjälp av ett optiskt mikroskop.

Det är en krävande och tidsintensiv uppgift 
som kan ta upp till 60 minuter att genomföra, 
särskilt när både perifert blod och benmärg 
ska analyseras. Laboratorieläkaren bedömer 
då cellernas sammansättning, förekomst av 
avvikande eller omogna celler, dysplastiska 
förändringar och graden av mognad i cel-
linjerna. En särskilt tidskrävande uppgift 
är beräkningen av blaster vid akut leukemi, 
lymfocyter vid kronisk lymfatisk leukemi och 
plasmaceller vid multipelt myelom från 500 

utvalda celler. Bedömningen är avgörande för 
att ställa diagnos, kontrollera behandlingssvar 
och remittera till fortsatt behandling.

Oavsett sin betydelse är den cytomorfolo-
giska bedömningen av benmärgen känd för 
att vara känslig för subjektivitet och variation 
mellan bedömare (6). Det traditionella mikro-
skopets roll utmanas av digitala skannrar som 
kan producera högupplösta bilder tillgängliga 
för både människa och maskin (figur 1). Med 
hjälp av maskininlärning kan system tränas 
att klassificera celler med hög precision och 
i vissa fall identifiera atypiska fynd (7). Men 
även i den mest omfattande publicerade 
studien varierar precisionen för olika blod-
kroppstyper kraftigt, från så lågt som 0,02 för 
avvikande eosinofiler till 0,95 för neutrofiler, 
och algoritmerna har ännu inte validerats på 
externa datauppsättningar (7). Typiskt sett 
arbetar algoritmer som är utvecklade för detta 
ändamål i två steg: först identifieras enskilda 

Figur 1. Potentiella tillämpningar av AI-modeller för att stödja laboratorieläkare i cytomorfologiska analyser. 
Figuren har skapats med Bio Render.
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celler i bilden och därefter klassificeras de 
i 10–20 distinkta cellklasser, beroende på 
modellens omfattning och syfte. Vanligtvis 
bygger modellerna på övervakad inlärning och 
använder arkitekturer som konvolutionella 
neurala nätverk eller transformermodeller, 
som är två av de mest framgångsrika ramver-
ken för bildanalys med hög noggrannhet (8). 
Det innebär en möjlighet att standardisera 
morfologiska bedömningar som annars är 
utsatta för subjektiv variation. Särskilt intres-
sant är detta i fall där diagnosen är beroende 
av subtila skillnader mellan cellpopulationer, 
exempelvis av omogna blaster vid tidig akut 
leukemi eller myelodysplastiska syndrom.

I vissa fall krävs en benmärgsbiopsi för att 
kunna bedöma sjukdomens utbredning vid 
exempelvis lymfom och utesluta möjlig ben-
märgsmetastas eller när aspiratprov inte kan 
erhållas. Det kallas ”dry tap” och kan inträffa 
vid sjukdomstillstånd där benmärgen är fibro-
tisk, vilket är särskilt vanligt vid myelofibros.

Biopsiproverna färgas vanligen med hema-
toxylin och eosin, men kan även genomgå 
ytterligare färgningar och immunhistokemiska 
analyser för att identifiera specifika celltyper 
eller strukturer. Preparaten analyseras av he-
matopatologer som spelar en central roll i att 
ställa diagnos och bedöma sjukdomens om-
fattning, särskilt vid komplexa eller ovanliga 
hematologiska tillstånd.

Brück et al. och andra har visat att det 
finns en potential för att använda histopato-
logiska bilder för att förutsäga förekomsten 
av genmutationer, kromosomavvikelser och 
prognoser (9, 10) (figur 1). I vår studie kunde 
vi demonstrera att maskininlärningsmodeller 
tränade för att uppskatta förekomsten av en 
specifik mutation visade en tydlig korrelation 
med mutationsbördan, kvantifierad genom 
den variant av allelfrekvens som uppmätts (9). 
Det tyder på att bildbaserad analys med hjälp 
av AI inte bara kan identifiera morfologiska 
förändringar, utan även kan spegla underlig-
gande genetiska avvikelser. Denna upptäckt 
öppnar för nya möjligheter inom diagnostik 
och riskstratifiering.

Beslutsstöd vid molekylärgenetisk 
analys
Utanför morfologin ser man en parallell ut-
veckling inom genetisk diagnostik. Högkapa-
citetssekvensering genererar enorma mängder 
data som kräver sofistikerad tolkning. De 
inledande stegen, såsom varianthantering 
och variantdetektion (alignment och calling), 

utförs vanligtvis med etablerade datahante-
ringspipeliner som inte bygger på AI. Däre-
mot har AI visat sig användbart i tolkningen 
av okända varianter, till exempel genom att 
analysera 3D-proteinstrukturen med hjälp av 
verktyg som Alpha Fold2 (11). I en annan stu-
die utvecklade forskare med djupinlärning en 
algoritm (Boost DM) för att identifiera vilka 
mutationer som driver tumörbildningen base-
rat på data från över 28 000 tumörer, inklusive 
fler än 30 hematologiska maligniteter (12). 
Med hjälp av SHAP-analys kunde de även 
tydliggöra, vilka egenskaper som låg till grund 
för att klassificera en mutation som drivare. 
Det ökade modellens tolkbarhet och transpa-
rens. Samtidigt möjliggörs djupare förståelse 
av hur en specifik genetisk förändring kan 
påverka proteinets funktion. Det i sin tur kan 
ge insikter om klinisk relevans och potentiella 
behandlingsstrategier.

Kromosombandsanalys är i dag guldstan-
dard för att identifiera cytogenetiska avvikelser 
vid hematologiska neoplasmer. Analysen är 
viktig för diagnostik, prognos och terapival, 
men är arbetskrävande och tidsödande. För 
att effektivisera processen har automatiserade 
system utvecklats med tre huvudsakliga steg: 
segmentering, klassificering och avvikelsede-
tektion (figur 2A).

Segmentering innebär att identifiera och se-
parera enskilda kromosomer i en metafasbild. 
Moderna metoder, inklusive U-Net-baserade 
nätverk, har visat hög noggrannhet även vid 
överlappande kromosomer. I klassificerings-
steget tilldelas kromosomerna sina korrekta 
positioner i ett karyogram utifrån form, storlek, 
centromerplacering och bandmönster. Här har 
andra djupinlärningsbaserade modeller visat 
god prestanda (94 % träffsäkerhet för klassifice-
ring av kromosomer). En metod kombinerade 
segmentering och klassificering med geometrisk 
optimering och uppnådde lovande resultat (13).

Automatiserad detektion av numeriska 
kromosomavvikelser, exempelvis trisomier, är 
möjlig genom att räkna kromosomer i varje 
klass (figur 2 A). Däremot har strukturella av-
vikelser som translokationer varit svårare att 
detektera. En ny modell baserad på konvolu-
tionella neurala nätverk (Chromosome-ReAD) 
visade hög träffsäkerhet (F1-poäng på 97 %) för 
vissa strukturella avvikelser och identifierade 
biologiskt relevanta mönster, vilket stärker 
dess kliniska potential (14). Automatiserade 
karyotyper förväntas därmed snart bli standard 
i klinisk praxis. 

Inom immunfenotypning används flödescy-
tometri som rutinverktyg för att karakterisera 
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cellpopulationer. Resultaten är ofta svåra att 
överblicka på grund av den höga dimensiona-
liteten i data (figur 2 B). Varje cell analyseras 
utifrån flera markörer samtidigt. AI kan här 
användas för att identifiera mönster i dessa 
data, klustra cellpopulationer och jämföra 
med kända sjukdomsprofiler (15). Det är sär-
skilt värdefullt i fall där det inte finns tydliga 
gränser mellan normal och patologisk fenotyp, 
exempelvis vid kroniska lymfoproliferativa 
tillstånd eller i efterbehandling av leukemier 
där minimal kvarvarande sjukdom (minimal 
residual disease, MRD) bedöms. I en studie 
klassificerade forskare flödescytometriprover 
med hjälp av ett konvolutionellt neuralt nät-
verk med avsevärd träffsäkerhet (F1-poäng på 
94 %) i en testuppsättning med 2 348 fall av sju 
olika B-cellsneoplasier (16). Modellen kunde 
dessutom klassificera 70 procent av fallen med 
minst 95 procents säkerhet.

Förbättrad effektivitet är en av de mest efter- 
frågade effekterna av AI inom klinisk hema-
tologi. Många hematologer upplever i dag ett 
ökat tryck på att snabbt leverera diagnoser 
och terapirekommendationer. Att ställa 
korrekt diagnos och subklass kan kräva de-
taljerad tolkning av flera diagnostiska tester 
och observation av flera molekylära och cy-
togenetiska förändringar, som ibland rentav 
kan vara flertydiga (17). Om AI kan minska 
handläggningstider genom automatiserad 
dataanalys eller förhandsklassificering av 
prover, kan det bidra till att avlasta kliniker 
och frigöra tid för patientkontakt.

En annan intressant aspekt är frågan om 
diagnostisk standardisering. I dag kan utfallet 
av vissa hematologiska bedömningar variera 
beroende på vem som analyserar provet, var 
i landet eller världen det sker och vilken 
teknisk utrustning som används. För närva-
rande undersöker flera prospektiva studier 
tillämpningen av AI-modeller för diagnostik av 
blodcancer (NCT04466059) (18). AI erbjuder 
möjligheten att harmonisera bedömningarna 
och minska variationerna. Det kan bidra till 
ökad jämlikhet i vården, där patienter oavsett 
geografisk tillhörighet får tillgång till samma 
typ av expertis.

Regulatoriska och etiska utmaningar
Trots alla dessa fördelar används AI-systemen 
inte autonomt. Anledningen är att felbedöm-
ningar fortfarande förekommer. Till exempel 
inom cytomorfologi händer det särskilt vid 
sällsynta sjukdomsbilder eller när bildkva-
liteten är otillräcklig. Därför fungerar AI i 
dag och sannolikt långt in i framtiden som 
beslutsstöd snarare än som ersättare för 
mänsklig expertis.

Introduktion av AI-baserade verktyg i kli-
nisk rutin kräver godkännande från tillsyns-
myndigheter. Det medicintekniska regelverket 
bidrar till att AI-systemen ofta certifieras som 
medicinska apparater med låg risk, eftersom 
det medför lägre regulatoriska krav och un-
derlättar godkännandeprocessen. Det innebär 
också att algoritmer och programvaror måste 

Figur 2. Automatisering av (A) kromosomanalys och (B) analys av flödescytometridata.  
Figuren har skapats med Bio Render.
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genomgå samma typ av noggrann kontroll som 
traditionell medicinsk utrustning (MDR och 
IVDR). Därmed kan introduktionen fördröjas 
och endast 1,8 procent av de medicintekniska 
produkter som godkändes av den amerikanska 
läkemedelsmyndigheten FDA 1990–2024 an-
vänds främst inom hematologi (19).

Nyckelelement i den här typen av reglering 
och lagstiftning inkluderar krav på att tillver-
karen ska säkerställa produktens säkerhet och 
prestanda genom omfattande riskanalys och 
klinisk utvärdering. Produkten måste ha tyd-
lig dokumentation och spårbarhet, inklusive 
transparens kring algoritmens funktion och 
eventuella begränsningar. Regelverken ställer 
också krav på kontinuerlig övervakning efter 
marknadslansering för att snabbt kunna hantera 
eventuella problem eller avvikelser. Dessutom 
måste integritet och datasäkerhet garanteras, i 
synnerhet när personuppgifter hanteras.

Ett annat återkommande dilemma är kva-
liteten på de data som används för att träna 
AI-modeller. Om algoritmer tränas på felaktiga 
eller bristfälliga uppsättningar finns risk för att 
de reproducerar bias eller missar ovanliga men 
kliniskt relevanta fynd. Läkare måste därför 
förstå att AI:s rekommendationer reflekterar 
det underlag den bygger på. Det krävs transpa-
rens kring hur modellerna är konstruerade och 
validerade, och möjlighet till manuell kontroll 
av resultaten.

Tolkbarhet är också en central fråga. Många 
AI-modeller, särskilt de som bygger på dju-
pinlärning, är svarta lådor där det är svårt att 
förstå hur beslutsvägarna ser ut. I ett medi-
cinskt sammanhang är detta problematiskt, 
eftersom ansvar måste kunna utkrävas och 
beslut motiveras för patienter och kollegor. 
Forskning pågår för att utveckla modeller som 
är begripliga för användaren.

Dessutom ställer EU:s förordning om arti-
ficiell intelligens, som nyligen godkändes av 
Europaparlamentet, nya krav för medicin-
tekniska produkter med medelhög risk och 
hög risk. Detta innebär att tillverkare måste 
dokumentera datakällornas ursprung, kvalitet 
och representativitet för den verkliga patient-
population där systemet ska användas. Dess-
utom ska AI-modellens beslut kunna förklaras 
på ett begripligt sätt för både användare och 
tillsynsmyndigheter för att öka transparensen 
och möjliggöra säker och ansvarsfull använd-
ning i klinisk praxis.

Sett från ett praktiskt perspektiv är det viktigt 
att AI-integrationen inte leder till kompetens-
förlust inom hematologi. Laboratorieläkare, 
patologer, genetiker och hematologer måste 

fortsatt kunna tolka morfologiska fynd, förstå 
genetiska analyser och hantera osäkerheter. 
AI bör ses som ett verktyg för att höja kva-
liteten, inte som en genväg för att minska 
utbildningskraven. I bästa fall kan tekniken 
vara en lärplattform, där yngre läkare snabbt 
kan få återkoppling och träna på diagnostiska 
situationer i simulerade miljöer.

På sikt öppnar AI möjligheter för ännu 
mer avancerad integration av patientdata. En 
tänkbar framtidsvision inom hematologin är 
att systemen kan kombinera genetisk profil, 
tidigare behandlingssvar, bilddiagnostik och 
realtidsdata från kliniska parametrar för att 
generera individanpassade behandlingsförslag. 
Det kräver dock inte bara teknisk utveckling 
utan även organisatoriska och juridiska kri-
terier för att data ska kunna samlas in, delas 
och tolkas på ett säkert sätt.

En viktig roll för den behandlande hemato-
logen blir därför att vara tolk och förmedlare 
mellan AI-systemens resultat och den enskilda 
patientens situation. Den tekniska utveck-
lingen kräver också att läkare engagerar sig i 
hur systemen fungerar, deltar i utvecklingen 
av dem och är med och sätter ramarna för hur 
de ska användas.

Slutsats
Det diagnostiska trycket inom hematologin 
ökar, drivet av en växande befolkning och 
förbättrad överlevnad vid kroniska blodsjuk-
domar. Samtidigt råder det brist på specialise-
rade laboratorieläkare och det gör att många 
laboratorier står inför svårigheter med att 
upprätthålla både kapacitet och kvalitet. Be-
hovet av standardisering och effektivisering 
är därför stort.

AI erbjuder ett kraftfullt tillskott till den 
hematologiska verktygslådan. Den kan bidra 
till att förbättra diagnostik, effektivisera ar-
betsflöden och skapa mer jämlik vård. Men 
dess värde avgörs inte bara av den tekniska 
kapaciteten, utan också av hur tekniken införs, 
tolkas och används i klinisk verklighet. För 
laboratorieläkare, genetiker, patologer och 
hematologer gäller det därför att hålla sig in-
formerade, vara kritiskt granskande och delta 
aktivt i utformningen av framtidens diagnostik.

Oscar Brück 
oscar.bruck@hus.fi 
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Summary
Artificial intelligence in the diagnostics of blood diseases
Artificial intelligence (AI) is becoming a valuable and even an inevitable tool in the diagnostics of hema-
tological diseases. Computational solutions can enhance diagnostic accuracy and speed up workflows in 
areas like blood smear evaluation, flow cytometry, and molecular testing. Most established solutions are 
based on image analysis and deep learning by enhancing cell differentials of peripheral blood and bone 
marrow samples. Although AI supports decision-making, it is not yet used independently due to potential 
errors and regulatory requirements. Therefore, integrating AI into clinical practice requires careful atten-
tion to ethical issues and patient safety.


