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The Role of Platelets and 
Megakaryocytes in Coagulation and 
Inflammation.
Anucleate, platelets have been traditionally 
viewed as simple cells, which participate in 
hemostasis and thrombosis. Platelets inherit 
a predictable, fixed, and relatively short-act-
ing hemostatic toolset from their parent cell: 
the megakaryocyte (MK). While the hemo-
static roles of platelets are well recognized, 
emerging data demonstrate megakaryocytes 
and platelets possess diverse and dynamic 
functions that also mediate inflammatory and 
immune response (3–5). In addition, platelets 

are thought to play critical roles in infectious 
diseases as many infectious processes result in 
thrombocytopenia due enhanced destruction 
of megakaryocytes and platelets (6–8). 

Megakaryocytes and platelets have a rel-
atively static transcriptome and proteome 
under basal conditions (9). However, recent 
studies have suggested the transcriptome of the 
megakaryocyte and subsequently the platelet, 
is dynamic during inflammatory processes, 
including viral infections and bacterial sepsis 
(10, 11). Changes in the transcriptome result 
in megakaryocytes and platelets possessing a 
multitude of innate immune tools, including 
toll-like receptors to recognize pathogens, 
and Fc receptors, which recognize immune 
complexes (3). In addition, platelets contain 
mRNA and proteins which act as antimicro-
bial agents, including antimicrobial peptides 
and beta-defensins, which directly act on 
bacterial pathogens (3, 5, 12). Platelets also 
release chemokines such as platelet factor 
4, RANTES and β-thromboglobulin, which 
increase leukocyte recruitment and surviv-
al during viral infections (Figure 1). These 
cytokines and chemokines can reduce HIV 
infection by directly interacting with the viral 
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Sir William Osler observed that “(e)xcept on few occasions, the patient appears to die from 
the body’s response to infection rather than from it.” During infection, two biological systems 
which are critically important in dictating the body’s response are the hemostatic and inflam-
matory pathways. While considered separately regulated biological pathways, coagulation 
and inflammation are intimately connected with extensive communication between each 
other resulting in an optimal response to injury and infection. However, abnormal responses 
in either pathway can result in excessive bleeding or thrombosis or an overexaggerated 
immune response. Amplified coagulation and inflammatory responses occur once pathogens 
and inflammatory mediators reach the systemic circulation, resulting in vascular damage, 
microthrombi, and multiorgan failure, including sepsis. These responses can further lead 
to a dysregulated hemostatic system resulting in thrombotic microangiopathy (hemolytic 
anemia, thrombocytopenia and microthrombi), complement activation and disseminated 
intravascular coagulation (DIC) (1, 2). Understanding the interplay between both systems is 
critical to developing novel therapeutics to bring both systems back into balance. This brief 
review will cover three areas which greatly influence coagulation and inflammation during 
disease: 1) megakaryocytes and platelets, 2) coagulation and fibrinolysis, and 3) immune 
cells and the endothelium. Taken together, this short review will provide a global overview of 
dysregulated coagulation and inflammation and areas of future discovery, which could lead to 
the development of novel diagnostics and treatments.
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envelope and inhibit Plasmodium parasites 
during malaria infection (13-16). Further-
more, certain changes in the transcriptome 
and proteome, including αIIb expression, have 
been associated with increased mortality (10).

Recently, megakaryocytes have been shown 
to play significant roles in fighting infections. 
For example, megakaryocytes possess major 
histocompatibility complex (MHC) I and 
are capable of endocytosis of endogenous 
antigen (17). Upon processing the antigen 
through the proteasome, megakaryocytes 
can present antigens in an MHC-I dependent 
manner to activate CD8+T cells. In addition, 
viral infections such as influenza and dengue 
virus significantly alter the transcriptome 
of megakaryocyte and platelets, resulting 
in expression of novel anti-viral molecules 
such as interferon-induced transmembrane 3 
(IFITM3) (11). Induction of IFITM3 in mega-
karyocytes and surrounding hemopoietic 
stem cells reduces viral infection and appear 
to be mediated through type I interferon re-
lease from the megakaryocyte.

Megakaryocytes and platelets also have 
toll-like receptors (TLRs) on their surface to 
facilitate innate immunity and interactions 
with other immune cells. Platelets express 
TLR2 (18, 19), TLR4 (20, 21), and TLR9 
(22), which play a role in platelet activation, 
secretion of pro-inflammatory cytokines, and 
enable the formation of heterotypic plate-
let-immune cell interactions. In addition, 
platelets express TLR7 and TLR3, which alter 
platelet-leukocyte aggregates, which will be 
discussed more below (23, 24).

The Role of Thrombin Generation, 
Clot Formation and Fibrinolysis in 
Inflammation.
Tissue factor (TF) is a critical glycoprotein, 
which is located at the nexus of coagulation 
and inflammation (25). Expression of TF leads 
to the initiation of the host response against 
injury and pathogen invasion. TF is normally 
located in in the sub-endothelium to prevent 
aberrant exposure to blood (26). However, 
upon mechanical injury or inflammatory 
stimuli, TF expression is upregulated on peri-
vascular cells as well as monocytes, which 
exposes TF to the circulating blood (Figure 2). 
This allows for factor VIIa (FVIIa) to complex 
with TF, resulting in activation of Factor IX 
and X, which subsequently converts a small 
amount of prothrombin to thrombin (26). 
This initial burst of thrombin acts as a positive 
feedback to amplify activation of the coagu-
lation system and generate more thrombin 
(26). Increased thrombin generation promotes 
platelet activation, fibrin clot formation, and 
pro-inflammatory measures mediated by the 
activation of protease activated receptors 
(PARs) on endothelial and other immune 
cells (27). Pro-inflammatory events driven by 
thrombin include recruitment and activation 
of monocytes, neutrophils and platelets and 
adhesion of leukocytes to endothelial cells, 
and the activation of the complement systems 
(27-29). Furthermore, activation of PARs by 
thrombin and TF-FVIIa results in increased 
release of pro-inflammatory cytokines, which 
further activate endothelial and immune cells, 

Figure 1. Megakaryocytes and platelets are key players in the inflammatory response. Pathogens and inflamma-
tory cytokines can interact with megakaryocytes through MHC-1, toll-like receptors, and other immune receptors 
to alter the megakaryocyte and platelet transcriptome. Megakaryocytes can regulate viral and bacterial infections 
through changes in the transcriptome profile. Platelets circulate in the blood and can interact with pathogens and 
release inflammatory molecules to block viral and bacterial infections. 
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resulting in secretion of damage-associated 
molecular patterns (DAMPs) (30). DAMPs 
will bind to TLRs on endothelial cells, im-
mune cells, and platelets to further amplify 
inflammation (30). 

Thrombin activates PARs on platelets and 
endothelial cells and generates fibrin. Throm-
bin activation of platelets results in release 
of chemokines and cytokines to reduce the 
spread of infection, while fibrin formation 
allows pathogens to be trapped and cleared 
by leukocytes (27-29).

Besides activating PARs on platelets and 
endothelial cells, thrombin will cleave soluble 
fibrinogen into insoluble fibrin. Fibrin plays 
a significant role in preventing blood loss by 
sealing damaged vessels (31). However, fibrin 
formation also recruits monocytes and mac-
rophages to limit pathogens from spreading 
(32). Furthermore, fibrin directly regulates 
the production of inflammatory cytokines 
and chemokines, including tumor necrosis 
factor alpha (TNFα), interleukin 1-beta and 
monocyte chemoattractant protein-1(33). 
Inflammatory cytokine production is thought 
to be mediated by TLR4 (34). Fibrin(ogen) 
appears critical to regulating host immune 
responses as fibrinogen-deficient mice have 
less macrophage adhesion and recruitment as 
well as reduced thrombin-mediated cytokine 
production (35). 

Generation of fibrin to reduce blood loss 
and prevent systemic bacterial spreading also 

activates the fibrinolytic system to break down 
the fibrin matrix and promote wound healing 
(35). Thrombin activates the endothelium to 
generate and secrete tissue-type plasminogen 
activator as well as urokinase type plasminogen 
activator. Both enzymes cleave plasminogen 
to plasmin, which ultimately degrades fibrin 
(36). While the fibrinolytic system is beneficial 
enhanced activation of the system can lead to 
increased inflammation. Plasmin generation 
can induce activation of NF-κB to drive expres-
sion of TNF-α, IL-1, and IL-6 (37). Plasmin can 
also activate parts of the complement pathway 
leading to the generation of inflammatory 
anaphylatoxins and the formation of the mem-
brane attack complex (38). The importance 
of thrombin generation, fibrin formation, and 
fibrinolysis has been demonstrated in mouse 
models where reduced thrombin generation 
and enhanced fibrinolysis increases susceptibil-
ity to bacterial infections, suggesting thrombin, 
platelets and megakaryocytes play critical roles 
in stemming the spread of infection, while 
maintaining hemostasis (35).

The Role of Immune Cells and  
the Endothelium in Coagulation  
and Inflammation.
Immune cells, including monocytes, macro-
phages, and neutrophils are key regulators of 
the interface between coagulation and inflam-
mation. Monocytes are innate immune cells 

Pathogens
Injury

Xa

TF/FVIIa

Xa

IIa

IIa

DAMPS tPA

PAR

Plasmin

Fibrin

IL-6
TNF-
IL-1

TF

Figure 2
R. Campbell & E. MiddletonFigure 2. The coagulation pathway regulates inflammatory responses. Tissue factor (TF) is exposed upon injury 

and pathogen invasion and interacts with factor VIIa (FVIIa) to generate factor Xa (FXa) and thrombin (IIa). Throm-
bin can then cleave fibrinogen to fibrin to generate a clot, which can trap leukocytes. Fibrin and IIa will cause 
leukocytes to synthesize inflammatory cytokines. IIa can also active endothelial cells through PARs and other re-
ceptors to release DAMPs. Furthermore, activated endothelial cells release tissue type plasminogen activator (tPA), 
which can dissolve the fibrin clot.
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responsible for phagocytosis of pathogens and 
the development of tissue macrophages and 
dendritic cells (39). Monocytes are a signifi-
cant source of TF, which can drive aberrant 
thrombin generation and cytokine production 
from surrounding immune cells (26). In ad-
dition, activated platelets bind to monocytes 
through their surface receptor P-selectin, 
adhering to PSGL-1 on the monocyte surface 
(40). Engagement of these two receptors and 
the formation of platelet-monocyte aggregates 
(PMAs) induces proinflammatory cytokine 
production by the monocytes, resulting in 
increased inflammatory and altered coagu-
lation pathways (Figure 3) (41). Increased 
PMA formation has been associated with 
inflammatory diseases such as diabetes, sepsis, 
and cardiovascular disease (42-44).

Neutrophils also play a significant role 
in altering inflammation and coagulation. 
During inflammation, activated neutrophils 
release web-like structure called neutrophil 
extracellular traps (NETs), which are made up 
of DNA, histones, and enzymes, such as neu-
trophil elastase and myeloperoxidase (MPO), 
to prevent the spread of pathogens (45). 
While NETs are responsible for entrapping 
and eliminating bacteria, they are also known 
to promote inflammation and thrombosis 
(45). NETs can be found inside thrombi and 
promote resistance to fibrinolysis (46). Fur-
thermore, NETs can activate platelets and 
endothelial cells, and promote the formation 

of more NETs from surrounding neutrophils. 
Histones associated with NETs also propagate 
increased coagulation and platelet activation. 
In vivo evidence has recently demonstrated a 
significant role for NETs in thrombosis (46). 
Increased markers of NETs, including MPO-
DNA complexes and circulating free DNA 
have been observed to increase after experi-
mental deep vein thrombosis in baboons (47) 
while systematic DNase treatment to degrade 
NETs protects mice from thrombosis (48). 

The endothelium also plays a critical role in 
crosstalk between inflammation and coagula-
tion (49, 50). Activated endothelial cells can 
express TF and initiate thrombin generation 
and fibrin formation (51). Endothelial cells 
also constitutively secrete vWF, and vWF-size 
cleaving and controlling ADAMTS-13 enzyme 
to maintain vWF homeostasis (52, 53). Infec-
tions can consume ADAMTS-13 or lead to 
antibody formation to exhaust or inactivate its 
capacity (49, 50). Decreased ADAMTS-13 activ-
ity may lead to the development of thrombotic 
thrombocytopenic purpura (TTP), or hemolytic 
uremic syndrome (HUS) or atypical, aHUS, 
resulting in thrombosis formation in the micro-
vasculature (brain, kidneys) due to platelet- and 
vWF-rich deposition and complement activa-
tion (54). Platelets can also bind to endothelial 
derived-vWF and generated fibrin on the endo-
thelium (thrombocytopenia, “consumption”). 

The endothelium also contains natu-
ral anticoagulants that prevent abnormal 
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R. Campbell & E. MiddletonFigure 3. Inflammation activates immune cells to regulate infection. Pathogens and inflammatory cytokines can 

activate neutrophils to release neutrophil extracellular traps, which kill bacterial pathogens. Activated platelets 
will interact with monocytes to induce pro-inflammatory cytokines. Activated platelets will also adhere to vWF se-
creted by activated endothelial cells. Finally, thrombomodulin (TM) and the endothelial protein C receptor (EPCR) 
interact to generate activated protein C (APC) to inactivated thrombin (IIa), which downregulates coagulation.
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thrombin generation and fibrin formation. 
During inflammation, these glycosamino-
glycans are downregulated due to release of 
proinflammatory cytokines. The reduction of 
glycosaminoglycans can reduce the activity 
of antithrombin and tissue factor pathway 
inhibitor, two critical anticoagulants which 
regulate thrombin and TF/FVIIa, respectively 
(55, 56). Reduced glycosaminoglycans also 
impact leukocyte adhesion and transmigra-
tion (55, 56). Other polysaccharides involved 
in the glycocalyx formation on the endothelial 
cell surface regulate coagulation and vascular 
function besides glycosaminoglycans. Dis-
ruption of the glycocalyx leads to increase 
thrombin generation, platelet adhesion and 
vascular edema within minutes of the loss of 
the glycocalyx. 

Endothelial cells also express thrombo-
modulin (TM) and endothelial cell protein C 
receptor (EPCR), which are responsible for 
the generation of activated protein C (APC) 
(57). APC is a critical regulator of coagulation 
and inflammation and deficiency of APC or 
EPCR significantly augment the risk of deep 
vein thrombosis and thromboembolism (57, 
58). APC downregulates thrombin and fibrin 
formation by cleaving coagulation factors 
such as factor VIIIa and Va. In addition, 
thrombin becomes inactivated when bound 
to TM; therefore, APC and TM are critical 
anticoagulant and anti-inflammatory medi-
ators (57, 58). Besides, regulating thrombin 
generation, APC inhibits NF-κB translocation 
to the nucleus and reduces release of pro-in-
flammatory cytokines, expression of TF, and 
inhibits recruitment of neutrophils (59). 

Robert A. Campbell
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